Robust estimation in a nonlinear cointegration model

نویسندگان

  • Jia Chen
  • Degui Li
  • Lixin Zhang
چکیده

——————————————————————————————————– Abstract This paper considers the nonparametric M–estimator in a nonlinear cointegration type model. The local time density argument, which was developed by Phillips and Park (1998) and Wang and Phillips (2009a), is applied to establish the asymptotic theory for the nonparametric M–estimator. The weak consistency and the asymptotic distribution of the proposed estimator are established under mild conditions. Meanwhile, the asymptotic distribution of the local least squares estimator and the local least absolute distance estimator can be obtained as applications of our main results. Furthermore, an iterated procedure for obtaining the nonparametric M–estimator and a cross–validation bandwidth selection method are discussed, and some numerical examples are provided to show that the proposed methods perform well in finite sample case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Outlier Robust Nonlinear Mixed Effect Estimation in Examining the Effect of Phenylephrine in Rat Corpus Cavernosum

Ignoring two main characteristics of the concentration-response data, correlation between observations and presence of outliers, may lead to misleading results. Therefore the special method should be considered. In this paper in to examine the effect of phenylephrine in rat Corpus cavernosum, outlier robust nonlinear mixed estimation is used. in this study, eight different doses of phenylephrin...

متن کامل

Development of a Robust Observer for General Form Nonlinear System: Theory, Design and Implementation

The problem of observer design for nonlinear systems has got great attention in the recent literature. The nonlinear observer has been a topic of interest in control theory. In this research, a modified robust sliding-mode observer (SMO) is designed to accurately estimate the state variables of nonlinear systems in the presence of disturbances and model uncertainties. The observer has a simple ...

متن کامل

A Nonlinear Model of Economic Data Related to the German Automobile Industry

Prediction of economic variables is a basic component not only for economic models, but also for many business decisions. But it is difficult to produce accurate predictions in times of economic crises, which cause nonlinear effects in the data. Such evidence appeared in the German automobile industry as a consequence of the financial crisis in 2008/09, which influenced exchange rates and a...

متن کامل

Nonparametric Estimation in a Nonlinear Cointegration Type Model by Hans

We apply nonparametric estimation theory in the framework of null recurrent Markov chains. In particular we show how a transfer function can be estimated and indicate connections to nonlinear cointegration.

متن کامل

Robust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers

Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...

متن کامل

Robust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers

Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 101  شماره 

صفحات  -

تاریخ انتشار 2010